

LAV-24 High air flow linear slot diffusers - Slot 24

The high induction linear diffusers for high air flow rates of the LAV-24 series have been designed to combine aesthetics with technical performance in HVAC systems.

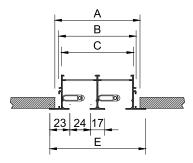
- 24mm slot. Adjustable vanes every 100 mm to modify the air direction without changing the air flow.
- Wall or false ceiling mounting.
- Optimum performance in CAV or VAV systems.
- Designed for installations between 2.6 and 4 m high, with a temperature differential of up to 12 C°.
- Suitable for both, air supply and return.

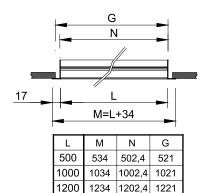
Product advantages:

- High induction rate.
- High air flow rate with a low noise level.
- Allows the formation of continuous diffuser lines, with active and inactive zones, without breaking the aesthetic uniformity of the whole.
- FIN model for hidden frame mounting, for greater architectural integration.
- Low visual impact of flat design of the vanes.

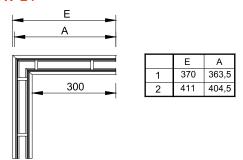
Offices □ Hotels

All kinds of buildings.





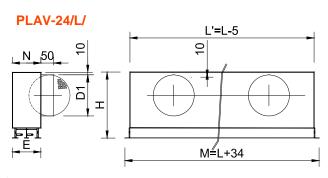
	Е	Α	В	С
1	70	57	48,2	42,2
2	111	98	89,2	83,2



1500

2000

A90-LAV-24


2

1534 | 1502,4

2034 2002,4 2021

1521

	L≼	0.5	L٤	≨ 1	L≼	1,2	Ls	1,6	L٤	€ 2		
	Н	D1	Н	D1	Н	D1	Н	D1	Η	D1	N	Е
1	256	1/158	256	1/158	256	1/158	256	2/158	256	2/158	68.5	70
2	256	1/158	256	1/198	256	1/198	256	2/198	256	2/198	107.5	111

LAV-24

CLASSIFICATION

LAV-24 High air flow linear slot diffuser. 24 mm slot.

...-AR Diffuser with end borders included. Suitable for lengths ≤ 2 m.

...-INT Diffuser without end borders, required to form lines > 2 m. (In case of needing sections of equal length, it must be indicated)

MATERIAL

Diffuser constructed from aluminium and deflection vanes in black colour PVC.

ACCESSORIES

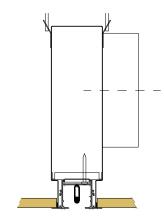
PLAV-24/L/ Plenum box with a lateral circular connection. It incorporates supports for ceiling suspension. Made in galvanised steel.

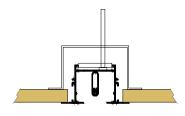
...-R Plenum box with an air flow damper in the spigot.

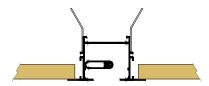
.../AIS/ Plenum box with thermal insulation inside. Foam density 25 kg / m3 ISO 845. Thermal conductivity 10° C_0,040 W / m°K EN 12667. Classified reaction to fire B-s1, d0 EN 13501-1.

ARV-24 End borders.

A90/LAV-24 Inactive diffuser without end borders, forming a 90° angle.







(PM)

(D)

3

FIXING SYSTEMS

- (PL) Diffuser to screw to plenum box and suspension of the assembly to the ceiling or wall.
- (PM) Diffuser with crossbars to install in a false ceiling or wall. Fixing by screws.
- (D) Diffuser with brackets for ceiling suspension using threaded rods.

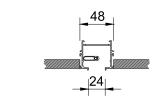
FINISHES

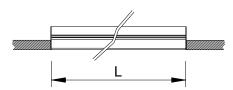
R9016S Painted white RAL 9016 (60-70% gloss) **R9010S** Painted white RAL 9010 (60-70% gloss) RAL... Painted other RAL.

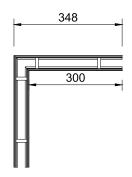
.../AB/ Vanes in white colour.

SPECIFICATION TEXT

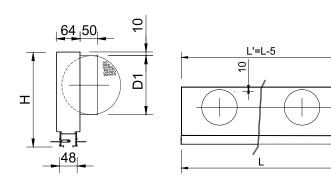
Supply and mounting of high induction linear diffuser for high air flow rates, 24 mm slot, LAV-24-AR+PLAV-24/L/-R R9016S 2x1000 series, made of aluminum and steel, painted white RAL 9016 (60-70% gloss) Plenum box with lateral circular connection, air flow damper in the spigot and necessary elements for assembly. Brand MADEL.







LAV-24-FIN



A90-LAV-24-FIN

PLAV-24-FIN/L/

	Ls	0.5	L٤	≨ 1	L≼	1,2	Ls	1,6	L٤	€ 2
	Н	D1	Н	D1	Н	D1	Н	D1	Н	D1
1	256	1/158	256	1/158	256	1/158	256	2/158	256	2/158

LAV-24-FIN

CLASSIFICATION

LAV-24-FIN Hidden high air flow linear slot diffuser. 24 mm slot.

...-AR Diffuser with end borders included. Suitable for lengths ≤ 2 m.

...-INT Diffuser without end borders, required to form lines > 2 m. (In case of needing sections of equal length, it must be indicated)

MATERIAL

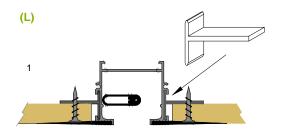
Diffuser constructed from aluminium and deflection vanes in black colour PVC.

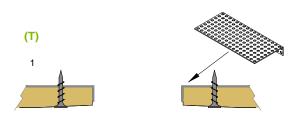
ACCESSORIES

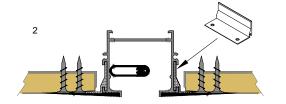
PLAV-24-FIN/L/ Plenum box with lateral circular connection to be mounted behind the plasterboard. Fixing (L) required. It incorporates supports for ceiling suspension. Made in galvanised steel.

PLAV-24/L/ Plenum box with lateral circular connection to be mounted in front of the plasterboard or masonry wall. Fixing (T) required.

...-R Plenum box with an air flow damper in the spigot.


.../AIS/ Plenum box with thermal insulation inside. Foam density 25 kg / m3 ISO 845. Thermal conductivity 10° C_0,040 W / m°K EN 12667. Classified reaction to fire B-s1, d0 EN 13501-1.


ARF-24 End borders.


A90/LAV-24-FIN Inactive diffuser without end borders, forming a 90° angle.

4 M A D E L V-07/23

5

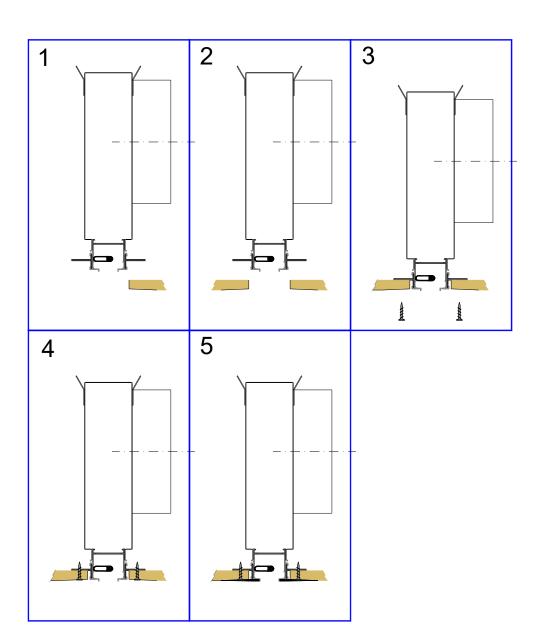
FIXING SYSTEMS

- (L) Brackets to hang from the ceiling the diffuser, with or without plenum box. Diffuser riveted to the plenum box.
- 1 Screw the front corner to the rear corner. Protect with anti-crack tape and fill with plaster.
- (T) Set of angles for front fixing of the diffuser, with or without plenum box, by means of hidden screws.
- 1 Insert the perforated angle in the upper part of the false ceiling.
- 2 Insert the diffuser through the bottom of the false ceiling. Align the front guides with the rear angle and screw. Protect with anti-crack tape and fill with plaster.

FINISHES

R9005M Painted black RAL 9005 (20-30% gloss)
R9016S Painted white RAL 9016 (60-70% gloss)
R9010S Painted white RAL 9010 (60-70% gloss)
RAL... Painted other RAL.
.../AB/ Vanes in white colour.

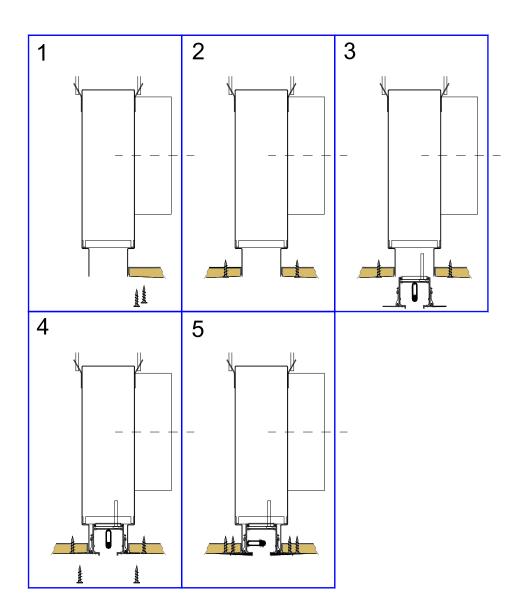
SPECIFICATION TEXT


Supply and mounting of hidden high induction linear diffuser for high air flow rates, 24 mm slot, LAV-24-FIN-AR+PLAV-FIN-24/L/-R R9005M 2x1000 series, made of aluminum and steel, painted black RAL 9005 (20-30% gloss) Plenum box with lateral circular connection, air flow damper in the spigot and necessary elements for assembly. Brand MADEL.

M A D E L V-07/23

ASSEMBLY INSTRUCTIONS LAV-24-FIN (L)

(L) Brackets to hang from the ceiling the diffuser, with or without plenum box. Diffuser riveted to the plenum box.


- 1. Support the "L" brackets.
- 2. Hang the diffuser with plenum box set.
- 3. Level the diffuser well and prepare the fixing screws.
- 4. Screw the "L" brackets through the laminated plasterboard.
- 5. Protect with anti-crack tape and fill with plaster.

6 MADEL V-07/23

ASSEMBLY INSTRUCTIONS LAV-24-FIN (T)

(T) Set of angles for front fixing of the diffuser, with or without plenum box, by means of hidden screws..

- 1. Insert the perforated angle and screw it to the laminated plasterboard.
- 2. Hang the plenum box and level it with the plasterboard.
- 3. Insert the diffuser into the plenum box.
- 4. Screw the diffuser through the front angle with the bracket.
- 5. Protect with anti-crack tape and fill with plaster.

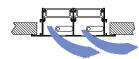
7 MADEL V-07/23

0.15

Afree (m2) 0,10 0,0086 0,0073 0.13

0,076 0,066

0,058 0,05 0,045 0,04 0,036 0,032 0,028


0,025 0,022

0,019 0,016 0,014 0,012 0,01 0,008 0,007 0,006 0,005 0,004 150 100 75

> > 5

DPt (Pa) 15 10

6

7 8 9 10

4000 3500

3000

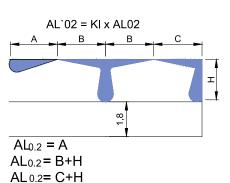
RECOMMENDED VELOCITY.

SLOTS	Vmin (m/s)	Vmax (m/s)		
1	2,5	4,5		
2	2,5	4,5		

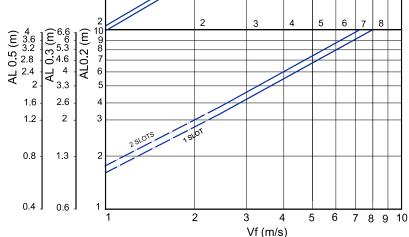
 $V (m/s) \times 3600 = Q (m^3/h) / A (m^2)$

FREE FACE AREA (m2).

	0.5 m	1 m	1.5 m	2 m
1	0.006	0.012	0.018	0.024
2	0.012	0.024	0.036	0.048


CORRECTON FACTOR FOR THROW KL

	0.5 m	1 m	1.5 m	2 m
1	0.71	1	1.07	1.14
2	0.73	1	1.09	1.15


CORRECTION FACTOR FOR DPt AND Lwa1.

			0.5 m			1 m		1	1.5 m			2 m	
		100%	50%	25%	100%	50%	25%	100%	50%	25%	100%	50%	25%
	Dpt	0.95	2.35	3.15	1	1.4	2.2	1	1.4	2.2	1.1	2.1	3.1
1	Lwa1	-	1,5	3,5	-	1,5	3,5	2,1	3,6	5,6	3	4,5	6,5
	Dpt	0.98	2.48	3.25	1	1.4	2.2	1	1.4	2.2	1.1	2.1	3.1
2	Lwa1	-	1,5	3,5	-	1,5	3,5	2,1	3,6	5,6	3	4,5	6,5

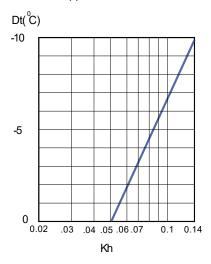
 $DPt1 = Kp \times DPt$ Lwa1 = Lwa + Kf

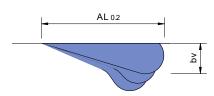
8

Vf (m/s)

3

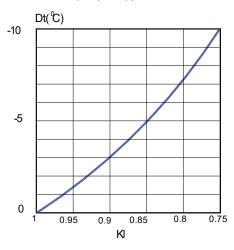
THROW WITH CEILING EFFECT: 1 DIRECTION.





CORRECTION FACTOR FOR VERTICAL DIFFUSION (bV) FOR DT (-).

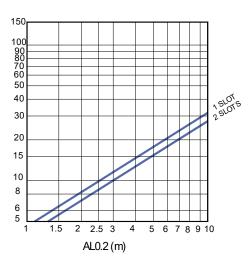
Kh = Correction factor for the vertical diffusion.



TEMPERATURE RATIO.

 $\underline{Dtl}_{=} \underline{t room - t x}$

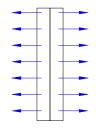
9


CORRECTON FACTOR FOR THROW (L0.2) DT (-).

KI = Correction factor for the throw.

bv = Kh x Al
$$_{0.2}$$

AL' $_{0.2}$ (Dt <0) = Kl x AL $_{0.2}$


$$i = \frac{Qr}{Q_0} = \frac{Q \text{ total at } x}{Q \text{ of supply.}}$$

RECOMMENDED VELOCITY.

SLOTS	Vmin (m/s)	Vmax (m/s)
1	2,5	4,5

2

1.6

1.2

8.0

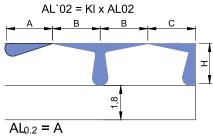
0.4

 $V (m/s) \times 3600 = Q (m^3/h) / A (m^2)$

FREE FACE AREA (m2).

	0.5 m	1 m	1.5 m	2 m
2	0.012	0.024	0.036	0.048

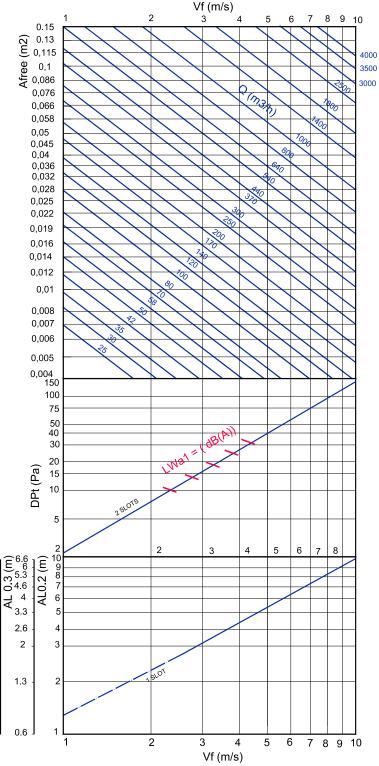
CORRECTION FACTOR FOR DPt AND Lwa1.


		0.5 m			1 m		1.5 m			2 m			
		100%	50%	25%	100%	50%	25%	100%	50%	25%	100%	50%	25%
	Dpt	0.98	2.48	3.25	1	1.4	2.2	1	1.4	2.2	1.1	2.1	3.1
2	Lwa1	-	1,5	3,5	-	1,4	3,5	2,1	3,6	5,6	3	4,5	6,5

 $DPt1 = Kp \times DPt$

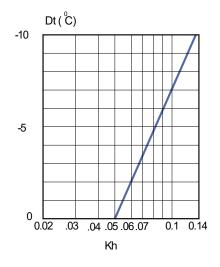
Lwa1 = Lwa + Kf

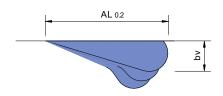
CORRECTON FACTOR FOR THROW KL

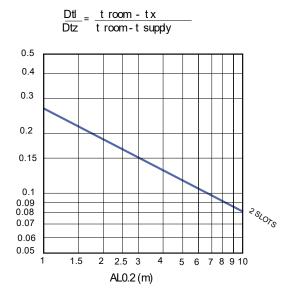

	0.5 m	1 m	1.5 m	2 m
2	0,6	1	1.17	1.3
	AL 'O'	2 = Kl x	AI 02	

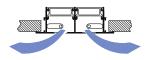
 $AL_{0.2} = B + H$ AL 0.2= C+H

FREE VELOCITY, PRESSURE LOSS AND SOUND POWER LEVEL, THROW WITH CEILING EFFECT: 2 DIRECTIONS.

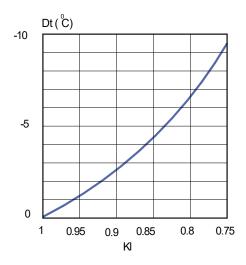




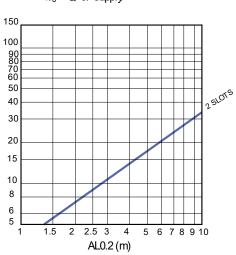

CORRECTION FACTOR FOR VERTICAL DIFFUSION (bV) FOR DT (-).



Kh = Correction factor for the vertical diffusion.



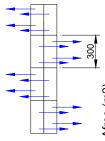
TEMPERATURE RATIO.


CORRECTON FACTOR FOR THROW (L0.2) DT (-).

KI = Correction factor for the throw.

bv = Kh x Al
$$_{0.2}$$

AL' $_{0.2}$ (Dt <0) = Kl x AL $_{0.2}$


$$i = \frac{Qr}{Q_0} = \frac{Q \text{ total at } x}{Q \text{ of supply}}$$

RECOMMENDED VELOCITY.

SLOTS	Vmin (m/s)	Vmax (m/s)		
1	2,5	4,5		
2	2,5	4,5		

2

1.6

1.2

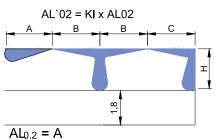
8.0

 $V (m/s) \times 3600 = Q (m^3/h) / A (m^2)$

FREE FACE AREA (m2).

	0.5 m	1 m	1.5 m	2 m
1	0.006	0.012	0.018	0.024
2	0.012	0.024	0.036	0.048

CORRECTION FACTOR FOR DPt AND Lwa1.

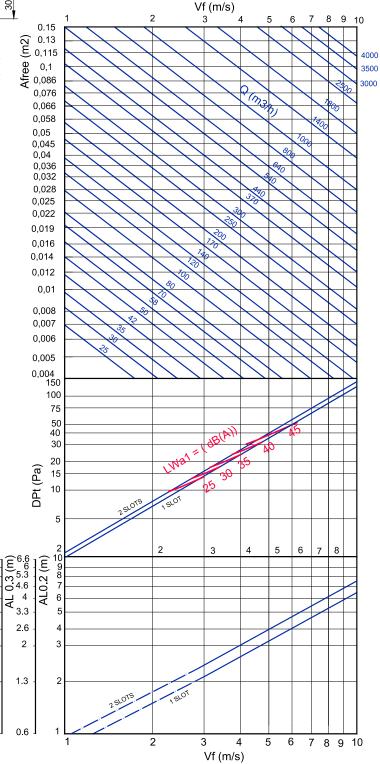

		0.5 m		1 m			1.5 m			2 m			
		100%	50%	25%	100%	50%	25%	100%	50%	25%	100%	50%	25%
	Dpt	0.95	2.35	3.15	1	1.4	2.2	1	1.4	2.2	1.1	2.1	3.1
1	Lwa1	-	1,5	3,5		1,5	3,5	2,1	3,6	5,6	3	4,5	6,5
	Dpt	0.98	2.48	3.25	1	1.4	2.2	1	1.4	2.3	1.1	2.1	3.1
2	Lwa1	-	1,5	3,5	-	1,5	3,5	2,1	3,6	5,6	3	4,5	6,5

 $DPt1 = Kp \times DPt$

Lwa1 = Lwa + Kf

THROW KL

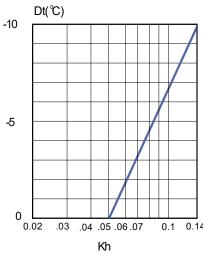
	0.5 m	1 m	1.5 m	2 m
1	0.82	1	1.2	1.43
2	0.73	1	1.27	1.34

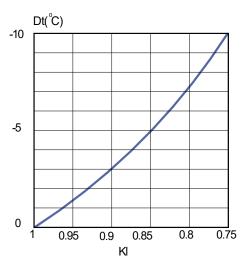


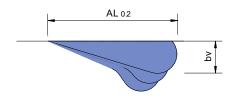
 $AL_{0.2} = B + H$

AL 0.2= C+H

FREE VELOCITY, PRESSURE LOSS AND SOUND POWER LEVEL, THROW WITH CEILING EFFECT: 2 DIRECTION.

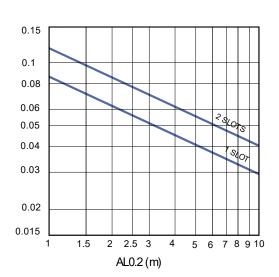




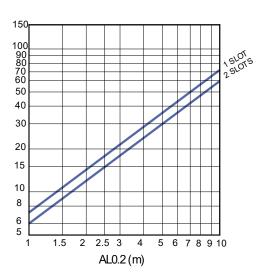

CORRECTION FACTOR FOR VERTICAL DIFFUSION (bV) FOR DT (-).

CORRECTON FACTOR FOR THROW (L0.2) DT (-).

Kh = Correction factor for the vertical diffusion.



KI = Correction factor for the throw.


bv = Kh x Al
$$_{0.2}$$

AL' $_{0.2}$ (Dt <0) = Kl x AL $_{0.2}$

TEMPERATURE RATIO.

$$\frac{Dtl}{Dtz} = \frac{t \text{ room - } t x}{t \text{ room - } t \text{ supply}}$$

$$i = \frac{Qr}{Q_0} = \frac{Q \text{ total at } x}{Q \text{ of supply}}$$

RECOMMENDED VELOCITY.

SLOTS	Vmin (m/s)	Vmax (m/s)
1	2,5	4,5
2	2,5	4,5

 $V (m/s) \times 3600 = Q (m^3/h) / A (m^2)$

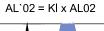
FREE FACE AREA (m2).

	0.5 m	1 m	1.5 m	2 m
1	0.012	0.024	0.036	0.048
2	0.024	0.048	0.072	0.096

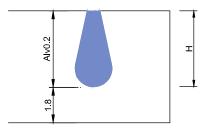
1.6

1.2

8.0

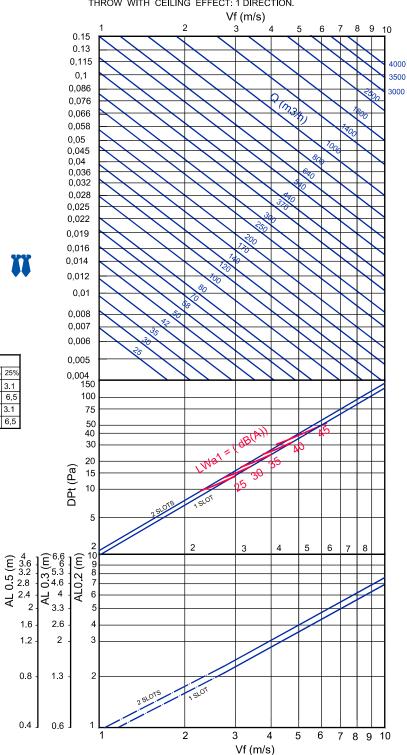

CORRECTION FACTOR FOR DPt AND Lwa1.

			0.5 m			1 m		1.5 m			2 m		
		100%	50%	25%	100%	50%	25%	100%	50%	25%	100%	50%	25%
	Dpt	0.95	2.35	3.15	1	1.4	2.2	1	1.4	2.2	1.1	2.1	3.1
1	Lwa1	-	1,5	3,5	-	1,5	3,5	2,1	3,6	5,6	3	4,5	6,5
2	Dpt	0.98	2.48	3.25	1	1.4	2.2	1	1.4	2.3	1.1	2.1	3.1
	Lwa1	-	1,5	3,5	-	1,5	3,5	2,1	3,6	5,6	3	4,5	6,5


 $DPt1 = Kp \times DPt$

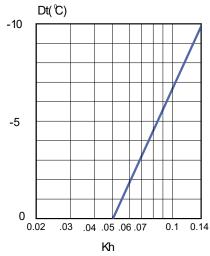
Lwa1 = Lwa + Kf CORRECTON FACTOR FOR THROW KL

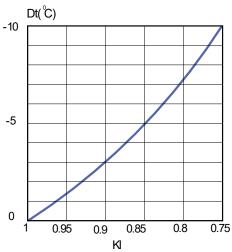
	0.5 m	1 m	1.5 m	2 m
1	0.7	1	1.1	1.2
2	0.72	1	1.15	1.25



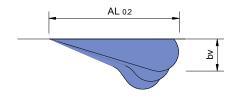
14

FREE VELOCITY, PRESSURE LOSS AND SOUND POWER LEVEL, THROW WITH CEILING EFFECT: 1 DIRECTION.





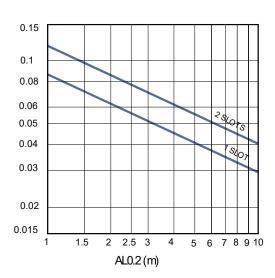
CORRECTION FACTOR FOR VERTICAL DIFFUSION (bV) FOR DT (-).



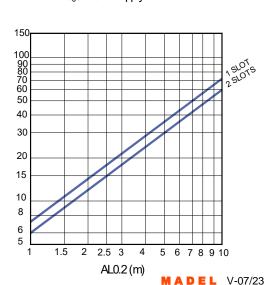
THROW (L0.2) DT (-).

CORRECTON FACTOR FOR

Kh = Correction factor for the vertical diffusion.



KI = Correction factor for the throw.

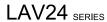

bv = Kh x Al
$$_{0.2}$$

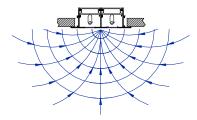
AL' $_{0.2}$ (Dt <0) = Kl x AL $_{0.2}$

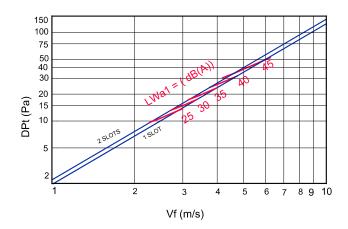
TEMPERATURE RATIO.

$$\frac{Dtl}{Dtz} = \frac{t \text{ room - } t x}{t \text{ room-} t \text{ supply}}$$

$$i = \frac{Qr}{Q_0} = \frac{Q \text{ total at } x}{Q \text{ of supply.}}$$






RECOMMENDED VELOCITY.

SLOTS	Vmin (m/s)	Vmax (m/s)
1	2,5	4,5
2	2,5	4,5

FREE FACE AREA (m2).

	0.5 m	1 m	1.5 m	2 m
1	0.012	0.024	0.036	0.048
2	0.024	0.048	0.072	0.096

FREE VELOCITY, PRESSURE LOSS AND SOUND POWER LEVEL.

CORRECTON FACTOR FOR THROW KL

		0.5 m		1 m			1.5 m			2 m			
		100%	50%	25%	100%	50%	25%	100%	50%	25%	100%	50%	25%
	Dpt	0.88	2.28	3	1	1.4	2.2	1.3	2.7	3.5	1.5	2.9	3.7
1	Lwa1	-	1,5	3,5	-	1,5	3,5	2,1	3,6	5,6	3	4,5	6,5
	Dpt	0.85	2.35	3.15	1	1.5	2.3	1.4	2.9	3.7	1.66	3.16	3.96
2	Lwa1	-	1,5	3,5	-	1,5	3,5	2,1	3,6	5,6	3	4,5	6,5

 $DPt1 = Kp \times DPt$

Lwa1 = Lwa + Kf

16 M A D E L V-07/23