

BMC rejillas para conducto circular

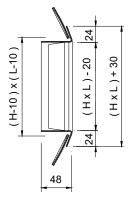
Las rejillas de la serie BMC están diseñadas para la impulsión de aire en instalaciones de climatización.

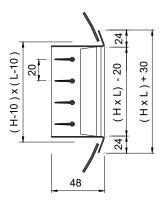
- Rejillas de simple o doble deflexión.
- Montaje directo en conducto circular.
- Aletas orientables individualmente para ajustar el alcance y la dirección de la vena de aire.

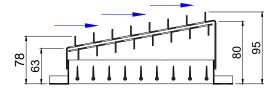
Ventajas del producto:

- Ideal para para instalaciones vistas ya que la rejilla se adapta a la curvatura del conducto.
- Junta perimetral para sellado con el conducto para evitar fugas de aire.

- Oficinas
- Locales comerciales
- Lofts







CMC



Dia conducto Dia Duct	Н
200 - 400	75
300 - 900	125
600 -1600	225

BMC+SD

CMC+SD

(T)

CLASIFICACIÓN

BMC Rejilla de simple deflexión. **CMC** Rejilla de doble deflexión.

MATERIAL

Rejilla construida en acero galvanizado. Todas las rejillas van provistas de una junta en la parte posterior del marco para obtener un sellado estanco en todo el perímetro de contacto.

ACCESORIOS

SD Regulador-captador para el caudal de aire. Funcionamiento por deslizamiento de placas con ventanas superpuestas. Construido en acero galvanizado.

SISTEMAS DE FIJACIÓN

(T) Tornillos visibles.

ACABADOS

R9016S Pintado blanco RAL 9016 semi-mate (60-70% brillo)

R9010S Pintado blanco RAL 9010 semi-mate (60-70% brillo)

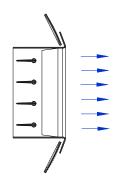
R9006M Pintado color aluminio RAL 9006 mate (20-30% brillo)

RAL... Pintado otros colores RAL.

TEXTO DE PRESCRIPCIÓN

Sum. y col. de rejilla de doble deflexión para conductos circulares con aletas orientables individualmente y 1ª fila paralelas a la dimensión menor serie CMC-SD R9006M (T) dim. LxH. Construida en acero galvanizado y lacado color aluminio RAL 9006 Mate, con regulador-captador de caudal construido en acero galvanizado y fijación por tornillos vistos. Marca MADEL.

2 MADEL V-12/22



BMC

H	400	500	600
75	0,016	0,020	0,025
125	0,031	0,039	0,047
225	0,060	0,076	0,087

VELOCIDAD LIBRE, PERDIDA DE CARGA Y POTENCIA SONORA. $Vf \ \, (\text{m/s})$

VELOCIDADES RECOMENDADAS.

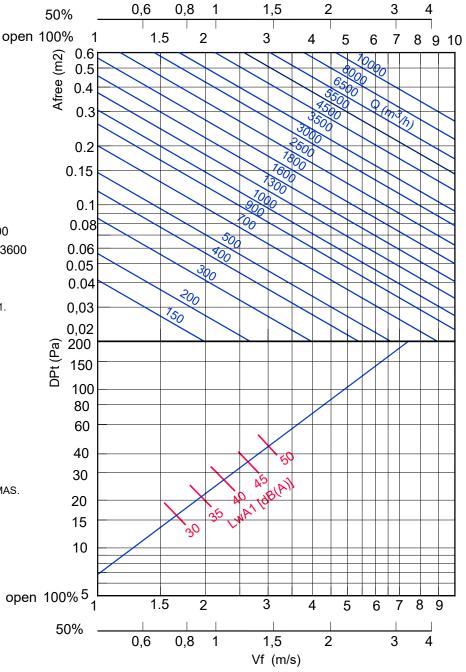
Vmin m/s	Vmax m/s
2	4

Determinación del caudal de aire. Midiendo Vf en diferentes puntos de la rejilla hallamos Vfmed.

Q (I/s) = Vfmed (m/s) * Afree (m2) * 1000 Q (m3/h) = Vfmed (m/s) * Afree (m2) * 3600

VALORES DE CORRECCIÓN PARA Lwa1.

Afree m2	0,01	0,02	0,05
Lwa1(kf)	-9	-6	-3

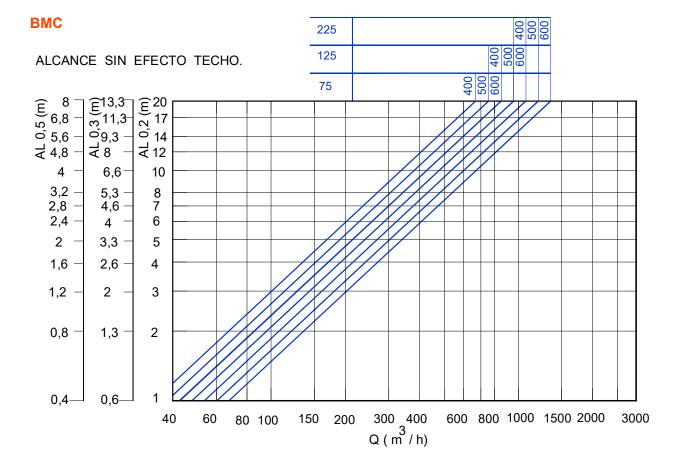

Valores del diagrama referidos a Afree = 0,1 m2.

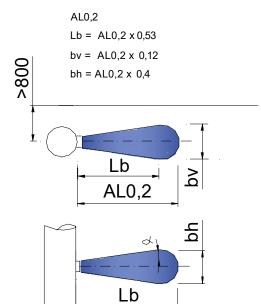
Lwa = Lwa1 + Kf

FACTOR DE CORRECCIÓN PARA DIFFERENTES POSICIONES DE LAS LAMAS.

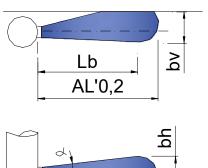
	0°	22°	45 °
Кр	1	1,28	1,4

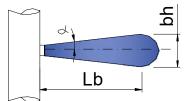
 $DPt' = Dpt \times Kp$





POSICIÓN LAMAS 0 SIN EFECTO TECHO


POSICIÓN LAMAS 0° CON EFECTO TECHO.


 $AL'0,2 = AL0,2 \times 1,33$

 $Lb = AL0,2 \times 0,7$

 $bv = AI0,2 \times 0,106$

 $bh = Al0,2 \times 0,53$

FACTOR DE CORRECCIÓN PARA LA POSICIÓN DE LAS LAMAS.

 $AL0,2(22^{\circ}) = AI0,2 \times 0,8$ $Lb(22^{\circ}) = AL0,2 \times 0,53$ $bv(22^{\circ}) = AI0,2 \times 0,096$

bh (22°) = Al0,2 x 0,48

 $AL0,2(45^{\circ}) = AI0,2 \times 0,5$ $Lb(45^{\circ}) = AL0.2 \times 0.33$

 $bv(45^{\circ}) = AI0,2 \times 0,06$

 $bh(45^{\circ}) = Al0,2 \times 0,6$

FACTOR DE CORRECCIÓN PARA LA POSICIÓN DE LAS LAMAS.

 $AL0,2(22^{\circ}) = AI0,2 \times 1,064$

 $Lb(22^{\circ}) = Al0,2 \times 0,7$

 $bv(22^{\circ}) = AI0,2 \times 0,08$ $bh(22^{\circ}) = Al0,2 \times 0,64$ $Lb(45^{\circ}) = AI0,2 \times 0,66$

 $Lb(45^{\circ}) = AI0,2 \times 0,44$ $bv(45^{\circ}) = AI0,2 \times 0,054$

 $bh(45^{\circ}) = Al0,2 \times 0,798$