
MADEL°

Diffuser NEX: Design Lievore, Altherr & Molina

NEX difusores rotacionales de elementos cóncavos

MADEL®

Los difusores rotacionales de la serie **NEX** están diseñados para su aplicación en aire acondicionado, ventilación y calefacción. Su montaje se realiza en falsos techos o suspendidos del techo.

El diseño de sus elementos cóncavos y su disposición radial en la placa, provocan una impulsión rotacional del aire con efecto coanda, obteniendo así un elevado índice de inducción y reduciendo la estratificación. Los elementos cóncavos garantizan un flujo de aire uniforme en toda la sección de paso.

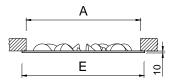
Los difusores **NEX** están diseñados para instalaciones tanto de CAV como de VAV. Estos difusores pueden ser utilizados en alturas de 2,6 hasta 4 metros y con un diferencial de temperatura de hasta 12° C.

Modelos:

NEX-S NEX-S-KLIN NEX-C



NEX-S



NEX-S.../SR/

NEX-S.../T.../

	Е	Α
400	395	376
500	495	476
600	595	576
610	605	591
625	620	601
675	670	651

NEX-S

Clasificación

NEX-S Difusor cuadrado de elementos de difusión en ABS negro.

.../SR/ Sección efectiva reducida respecto el tamaño de la placa.

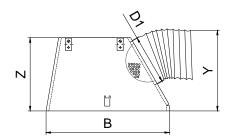
.../T15/ Placa para techos modulares perfil 15 mm y placa descolgada.

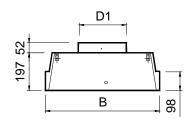
.../T24/ Placa para techos modulares perfil 24 mm y placa descolgada.

Material

Difusor construido en acero galvanizado y elementos de difusión en plástico ABS.

Todos los difusores van provistos de una junta de espuma en la parte posterior, para obtener un sellado estanco en todo el perímetro de contacto con el plenum o el techo.





BOXSTAR

BOXSTAR /S/

	В	Z	Υ	D1
400	390	300	325	198
500	490	300	325	198
600-D1:250	590	350	375	248
600-D1:200	590	300	325	198
610-D1:250	600	350	375	248
610-D1:200	600	300	325	198
625-D1:250	615	350	375	248
625-D1:200	615	300	325	198
675-D1:250	665	350	375	248
675-D1:200	665	300	325	198

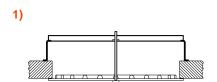
BOXTHERM N

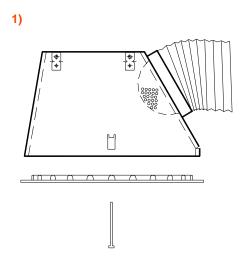
	Z	D1
BOXTHERM 600-DIAM250	350	248
BOXTHERM 600-DIAM200	300	198

Accesorios

BOXSTAR Plenum piramidal apilable con conexión circular lateral. Incorpora soportes para suspensión en el techo. El puente de montaje se suministra a parte para ser ensamblado manualmente en obra. Construido en acero galvanizado.

...-R Plenum con regulador de caudal en el cuello de conexión.


.../S/ Plenum con conexión circular superior.


.../AIS Plenum aislado térmicamente con espuma. Densidad 30 kg/m3 ISO 845. Conductividad térmica 20° C_0,040 W/m°K ISO 3386/1. Clasificado reacción al fuego B-s2,d0 EN 13501-1.

BOXTHERM Plenum piramidal apilable con conexión lateral, construido en poliestireno expandido, que actúa como aislante termoacústico. ...-R Plenum con regulador de caudal en el cuello de conexión.

PMXO Puente de montaje para instalar en falso techo con conducto rectangular.

Sistemas de fijación

1) Fijación a puente de montaje o a plenum, mediante tornillo central.

Acabados

M9016 Lacado blanco similar al RAL 9016.

R9010 Lacado blanco RAL 9010.

RAL... Lacado otros colores RAL.

.../EB/ Elementos en plástico ABS blanco.

.../EL/ Elementos en plástico ABS azul lavanda.

.../EV/ Elementos en plástico ABS verde pistacho.

.../ER/ Elementos en plástico ABS rojo.

Texto de prescripción

Sum.y col. de difusor rotacional cuadrado de elementos de difusión fijos cóncavos en disposición radial serie NEX-S+BOXSTAR-R M9016 dim. 600 construido en acero galvanizado y acabado lacado color blanco M9016 y elementos de difusión en ABS negro. Con plenum piramidal apilable de conexión circular lateral, regulador de caudal en el cuello BOXSTAR-R. Marca MADEL.

NEX-S-KLIN

	Е	Α	F
400	395	369	345
500	495	469	445
600	595	569	545
610	605	579	555
625	620	594	570
675	670	644	620
600-400	595	569	545
600-500	595	569	545
610-400	605	579	555
610-500	605	579	555
625-400	620	594	570
625-500	620	594	570
675-400	670	644	620
675-500	670	644	620

NEX-S-KLIN

Clasificación

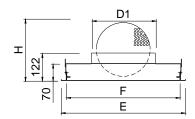
NEX-S-KLIN Difusor integrado en una placa accesible frontalmente sin necesidad de herramientas, mediante cierre tipo PUSH.

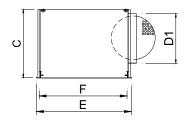
Presionando sobre los cierres PUSH, se hace pivotar la placa interior sobre uno de los lados y ésta queda suspendida del marco exterior, pudiendo ser fácilmente desmontada para su mantenimiento.

El sistema KLIN facilita el mantenimiento del difusor, en cumplimiento de las Normas Españolas de Mantenimiento ITE 08.1 del R.I.T.E.

Material

Difusor construido en acero galvanizado y elementos de difusión en plástico ABS.





NEX-S-KLIN+PLK...-R

NEX-S-KLIN+PLK/L/...-R

	Е	F	D1	Н	С
400	395	365	198	205	320
500	495	465	248	286	370
600	595	565	313	353	435
610	605	575	313	353	435
625	620	590	313	353	435
675	670	640	313	353	435

1)

Accesorios

PLK Plenum incorporado al difusor con conexión circular superior. Construido en acero galvanizado.

...-R Plenum con regulador de caudal en el cuello de conexión.

.../L/ Plenum con conexión circular lateral.

.../AIS/ Plenum aislado térmicamente con espuma. Densidad 30 kg/m3 ISO 845.
Conductividad térmica 20° C_0,040 W/m°K ISO 3386/1. Clasificado reacción al fuego B-s2,d0 EN 13501-1.

Sistemas de fijación

1) Fijación con patillas para suspensión al techo mediante varillas.

Acabados

M9016 Lacado blanco similar al RAL 9016.

R9010 Lacado blanco RAL 9010.

RAL... Lacado otros colores RAL.

.../EB/ Elementos en plástico ABS blanco.

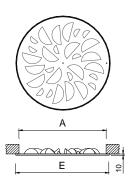
.../EL/ Elementos en plástico ABS azul lavanda.

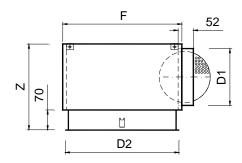
.../EV/ Elementos en plástico ABS verde pistacho.

.../ER/ Elementos en plástico ABS rojo.

Texto de prescripción

Sum. y col. de difusor rotacional cuadrado de elementos de difusión fijos cóncavos accesibles frontalmente sin necesidad de herramientas, mediante cierre PUSH, serie NEX-S-KLIN+PLK-R M9016 dim. (mm) construido en acero galvanizado y acabado lacado color blanco M9016 y elementos de difusión en ABS negro. Con plenum de conexión circular superior, regulador de caudal en el cuello PLK-R. Marca MADEL.





NEX-C

	Е	Α
400	400	376
500	500	476
625	625	601

PLXOC

	D2	F	Z	D1
400	395	415	300	198
500	495	515	300	198
625	620	640	350	248

NEX-C

Clasificación

NEX-C Difusor circular de elementos de difusión en ABS negro.

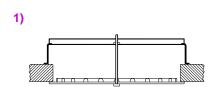
Material

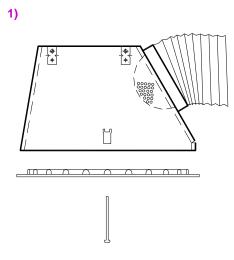
Difusor construido en acero galvanizado y elementos de difusión en plástico ABS.

Todos los difusores van provistos de una junta de espuma en la parte posterior, para obtener un sellado estanco en todo el perímetro de contacto con el plenum o el techo.

Accesorios

PLXOC Plenum con conexión circular lateral.


...-R Plenum con regulador de caudal en el cuello de conexión.


.../S/ Plenum con conexión circular superior.

.../AIS/ Plenum aislado térmicamente con espuma. Densidad 30 kg/m3 ISO 845. Conductividad térmica 20° C_0,040 W/m°K ISO 3386/1. Clasificado reacción al fuego B-s2,d0 EN 13501-1.

PMXO Puente de montaje para instalar en falso techo con conducto rectangular.

Sistemas de fijación

1) Fijación a puente de montaje o a plenum, mediante tornillo central.

Acabados

M9016 Lacado blanco similar al RAL 9016.

R9010 Lacado blanco RAL 9010.

RAL... Lacado otros colores RAL.

.../EB/ Elementos en plástico ABS blanco.

.../EL/ Elementos en plástico ABS azul lavanda.

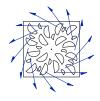
.../EV/ Elementos en plástico ABS verde pistacho.

.../ER/ Elementos en plástico ABS rojo.

Texto de prescripción

Sum. y col. de difusor rotacional circular de elementos de difusión fijos cóncavos en disposición radial serie NEX-C+PLXOC-R M9016 dim. 600 construido en acero galvanizado y acabado lacado color blanco M9016 y elementos de difusión en ABS negro. Con plenum de conexión circular lateral, regulador de caudal en el cuello PLXOC-R.

Marca MADEL.



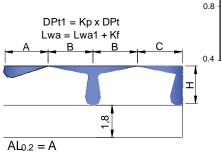
NEX-S

(datos técnicos iguales para 600, 610, 625 o 675)

VELOCIDAD RECOMENDADAS.

NEX-S	Vmin m/s	Vmax m/s
400	2,5	5,9
500	2,5	5,6
600	2,5	5,4
625	2,5	5,4
675	2,5	5,4

SECCION LIBRE DE SALIDA DEL AIRE (m2).


NEVO	Afree	Qmin.	Qmax.
NEX-S	m2	m3/h	m3/h
400	,0201	181	427
500	,029	261	585
600	,044	396	855
625	,044	396	855
675	,044	396	855

VALORES DE CORRECCION PARA DPt Y Lwa1.

вох	BOXSTAR-R		50% Open	10% Open
400	Dpt (Kp)	1	1,2	2,4
400	Lwa1 (Kf)	+1,6	+1,9	+1,1
500	Dpt (Kp)	1	1,2	2,3
500	Lwa1 (Kf)	+1,8	+2,1	+1,1
	Dpt (Kp)	1	1,4	4
600	Lwa1 (Kf)	+2	+2,74	+1,5
	Dpt (Kp)	1	1,5	4,8
625	Lwa1 (Kf)	+2	+2,75	+1,5
675	Dpt (Kp)	1	1,5	4,8
0.0	Lwa1 (Kf)	+2	+2,75	+1,5

W 3.6 3.6 2.8 2.8 2.4

1.6

 $AL_{0.2} = B+H$ $AL_{0.2} = C+H$

VELOCIDAD LIBRE, PERDIDA DE CARGA Y POTENCIA SONORA, ALCANCE CON EFECTO TECHO.

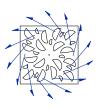
NEX-S + BOXSTAR

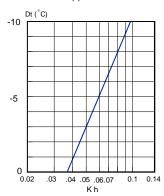
Q (m³/h)

	10 10 9 8 7 6	00 1	50 20	00 25	50 3	00	40	0	50	00	70	00	1	000) 12	00	1500	2	000
Vf (m/s)	9									400		Ķ	9	1	,60°		4		
E	8 7									>				6g	5/				
¥	6										\checkmark			7	_		+		
	5												_				+		-
	4								-		\vee			_			+		-
	3			/			4			_				4			+		-
			/		/														
	2			/		/													
	2																Т		
				/															
	4		/																
_	1 150		/				Н	_	_			,0°		~0	_		16		1
Ра	100												8	99		200	91,-	,	
Dpt (Pa)	75	_						1	_				_		60	62	+		
	50 40							-	\times	\sim	\angle		$\overline{}$	4	<u></u>		+		-
	30						>	Z		\nearrow		\angle		c	(a)				
	20	_				\geq		2			\leq	3	,	8	, ,				
	15				>	5					જી	NS.	//	`					
	10			/				4		J. V.	V	n							
			/	/ /		/													
	5				/												1		
		//	1 /																
6.6	ε ¹⁰												رد		0/2	5/			
6.6	AL 0,2 (m)											ΔQ		5			+		
4.6 - 4 -	9L 0												6	9					
3.3 -	5									_									
2.6 -	4									_									
	3					/				/									
2 -	3																		
				/	//														
1.3	2													+			+		
			//																
0.6	1	//																	
	10	00 15	50 20	00 25	50 3		400		50		70	00		100	0 12	00	1500	2	000
						Q	(m	³ /	h))									

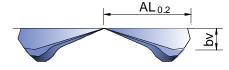
Nota: En MadelMedia Espectro por banda de octava en Hz.

10 NEX-S-GR1-06-09

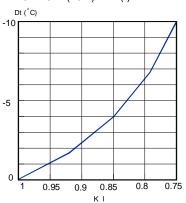




NEX-S


(datos técnicos iguales para 600, 610, 625 o 675)

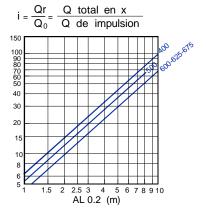
FACTOR DE CORRECCION DE LA DIFUSIÓN VERTICAL (bV) PARA DT (-).


Kh = Factor de corrección de la difusión vertical.

RELACION DE TEMPERATURAS.

 $\underline{\text{Dtl}}_{=}$ $\underline{\text{t local - t x}}$

FACTOR DE CORRECCION DEL ALCANCE (L0.2) DT (-).



kl = Factor de corrección del alcance.

bv = Kh
$$\times$$
 AL $_{0.2}$

$$AL'_{0.2}(Dt < 0) = KI \times AL_{0.2}$$

RELACION DE INDUCCION.

ALCANCE CON EFECTO TECHO.

200 250 300

 $Q(m^3/h)$

400 500

NEX-C + PLXOC

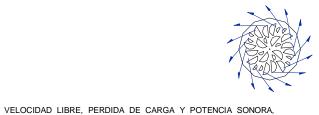
150

6 5 4

3

2

1 150

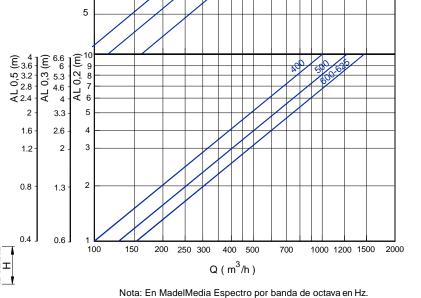

50 40 30

20 15 10

Vf (m/s)

1000 1200 1500 2000

VELOCIDAD RECOMENDADAS.


NEX-C	Vmin m/s	Vmax m/s
400	2,5	5,9
500	2,5	5,6
625	2,5	5,4

SECCION LIBRE DE SALIDA DEL AIRE (m2).

_				
	NEX-C	Afree m2	Qmin. m3/h	Qmax. m3/h
	400	,0201	181	427
	500	,029	261	585
	625	,044	396	855

VALORES DE CORRECCION PARA DPt Y Lwa1.

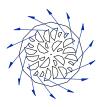
PLXOC-R		100% Open	50% Open	10% Open
400	Dpt (Kp)	1	1,2	2,4
400	Lwa1 (Kf)	+1,6	+1,9	+1,1
500	Dpt (Kp)	1	1,2	2,3
500	Lwa1 (Kf)	+1,8	+2,1	+1,1
	Dpt (Kp)	1	1,4	4
625	Lwa1 (Kf)	+2	+2,74	+1,5

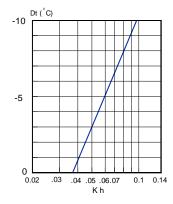
6, $AL_{0.2} = A$

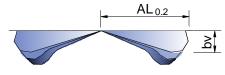
 $DPt1 = Kp \times DPt$ Lwa = Lwa1 + Kf

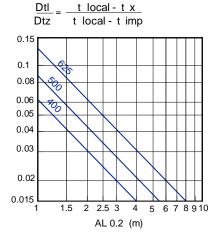
 $AL_{0.2} = B+H$ AL 0.2= C+H

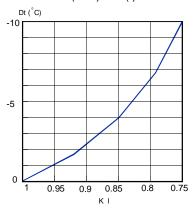
12 NEX-C-GR3-06-09






NEX-C


FACTOR DE CORRECCION DE LA DIFUSIÓN VERTICAL (bV) PARA DT (-).


Kh = Factor de corrección de la difusión vertical.

RELACION DE TEMPERATURAS.

FACTOR DE CORRECCION DEL ALCANCE (L0.2) DT (-).

kl = Factor de corrección del alcance.

bv = Kh
$$\times$$
 AL $_{0.2}$

$$AL'_{0.2}(Dt < 0) = KI \times AL_{0.2}$$

RELACION DE INDUCCION.

13 NEX-C-GR4-06-09