

BMC bocchette per canale circolare

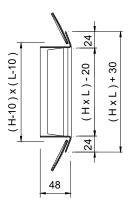
Le bocchette BMC sono state progettate per la mandata d'aria negli impianti climatizzazione.

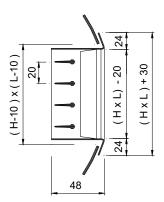
- Bocchette a semplice et doppia deflessione.
- Montaggio direttamente nel condotto circolare.
- Alette regolabili individualmente per regolare la gittata e la vena d'aria.

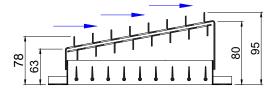
Vantaggi del prodotto:

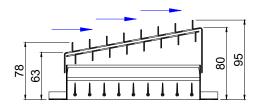
- Ideale per installazioni a vista in quanto la griglia si adatta alla curvatura del condotto.
- Guarnizione per ottenere la massima aderenza in tutta la superficie di contatto a condotto per evitare perdite d'aria.

- ☐ Uffici
- Locali commerciali
- Loft









Dia conducto Dia Duct	Н
200 - 400	75
300 - 900	125
600 -1600	225

BMC+SD



CMC+SD

(T)

2

CLASSIFICAZIONE

BMC Bocchetta a semplice deflessione. **CMC** Bocchetta a doppia deflessione.

MATERIALE

Bocchette costruite in acciaio zincato. Tutte le bocchette sono fornite di una guarnizione nella parte posteriore della cornice per ottenere una migliore tenuta.

ACCESSORI

SD Captatore-regolatore per il flusso d'aria. Funziona a scorrimento. Costruito in acciaio zincato.

SISTEMI DI FISSAGGIO

(T) Vite in vista.

FINITURE

R9016S Verniciato bianco RAL 9016 semi-opaco (60-70% gloss)

R9010S Verniciato bianco RAL 9010 semi-opaco (60-70% gloss)

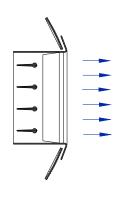
R9006M Verniciato colore alluminio RAL 9006 opaco (20-30% gloss)

RAL... Verniciato altri colori RAL.

SPECIFICHE PER CAPITOLATO

Fornitura e posa in opera bocchetta a doppia deflessione per canale circolare con alette orientabili singolarmente e 1ª fila parallele alla dimensione minore serie CMC+SD (T) R9006M dim. LxH, costruita in acciaio zincato e verniciata colore alluminio RAL 9006 Opaco, con regolatorecaptatore in acciaio zincato e fissaggio con vite in vista. Marca MADEL.

M A D E L V-12/22


BMC

H	400	500	600
75	0,016	0,020	0,025
125	0,031	0,039	0,047
225	0,060	0,076	0,087

VELOCITA LIBERA, PERDITA DI CARICO E POTENZA SONORA.

Vf (m/s)

VELOCITA RACCOMANDATA.

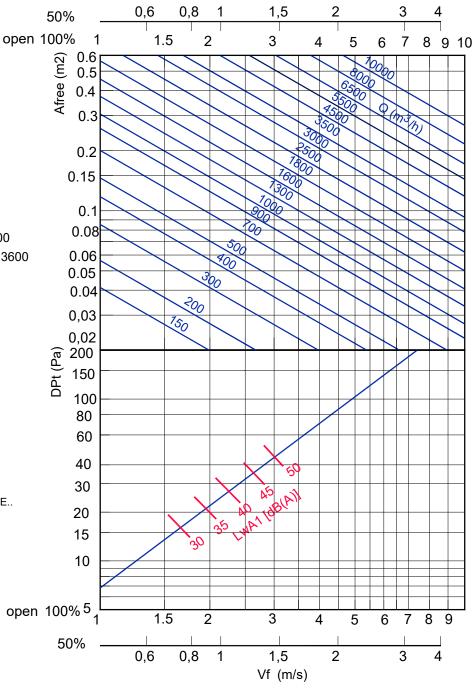
Vmin	Vmax
m/s	m/s
2	4

Determinazione del flusso d'aria. Misurando Vf in differenti punti della bocchetta calcoliamo V f med.

Q (I/s) = Vfmed (m/s) * Afree (m2) * 1000 Q (m3/h) = Vfmed (m/s) * Afree (m2) * 3600

VALORI DI CORREZIONE PER Lwa1.

Afree m2	0,01	0,02	0,05
Lwa1(kf)	-9	-6	-3

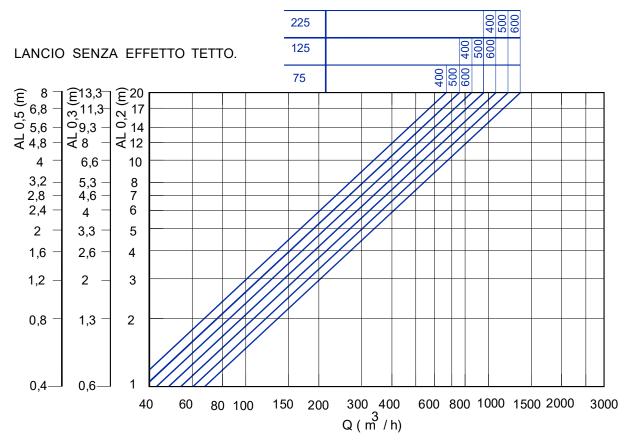

Valori del diagramma riferiti a Afree = 0,1 m2.

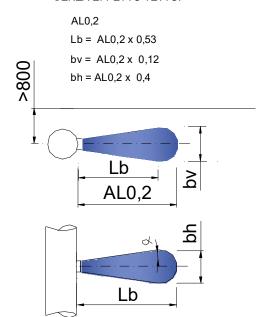
Lwa = Lwa1 + Kf

VALORI DI CORREZIONE DELLA DPt.
PER DIFFERENTI POSIZIONI DELLE ALETTE..

	0°	22°	45 °
Kp	1	1,28	1,4

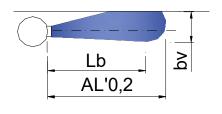
 $DPt' = Dpt \times Kp$

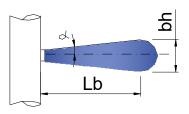




BMC

POSIZIONI DELLE ALLETTES 0 $^{\circ}$ SENZA EFFETTO TETTO.


POSIZIONI DELLE ALLETTES 0 $^{\circ}$ CON EFFETTO TETTO.


 $AL'0,2 = AL0,2 \times 1,33$

 $Lb = AL0,2 \times 0,7$

 $bv = Al0,2 \times 0,106$

 $bh = Al0,2 \times 0,53$

FATTORI DI CORREZIONE SECONDO LA POSIZIONI DELLE ALLETTES.

FATTORI DI CORREZIONE SECONDO LA POSIZIONI DELLE ALLETTES.

 $AL0,2(22^{\circ}) = AI0,2 \times 0,8$ $Lb(22^{\circ}) = AL0,2 \times 0,53$ $bv(22^{\circ}) = AI0,2 \times 0,096$

bh (22°) = Al0,2 x 0,48

 $AL0,2(45^{\circ}) = AI0,2 \times 0,5$ $Lb(45^{\circ}) = AL0,2 \times 0,33$ $bv(45^{\circ}) = AI0,2 \times 0,06$

 $bh(45^{\circ}) = Al0,2 \times 0,6$

 $AL0,2(22^{\circ}) = Al0,2 \times 1,064$ $Lb(22^{\circ}) = Al0,2 \times 0,7$ $bv(22^{\circ}) = Al0,2 \times 0,08$ $bh(22^{\circ}) = Al0,2 \times 0,64$ Lb(45°) = Al0,2 x 0,66 Lb(45°) = Al0,2 x 0,44 bv(45°) = Al0,2 x 0,054 bh(45°) = Al0,2 x 0,798