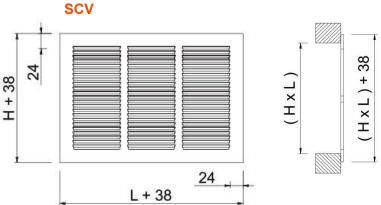
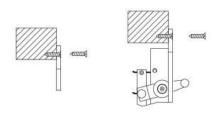
MADEL®

SCV rejillas estampadas MADEL®

Las rejillas de la serie **SCV** han sido diseñadas para su utilización en instalaciones de calefacción, ventilación y aire acondicionado. Se utilizan para retorno e impulsión en grandes superficies, parkings o instalaciones domésticas.

1 03/20





CCV H×L)+10 24 42 L + 38

Sistema de fijación (T)

CLASIFICACIÓN

SCV Rejillas con aletas paralelas a la dimensión menor y orientadas en una dirección.

CCV Rejillas con aletas paralelas a la dimensión mayor y orientadas en una dirección. Incorporan regulador de caudal con mando exterior.

MATERIAL

Rejillas fabricadas en acero galvanizado.

SISTEMAS DE FIJACIÓN

(T) La fijación se realiza mediante tornillos.

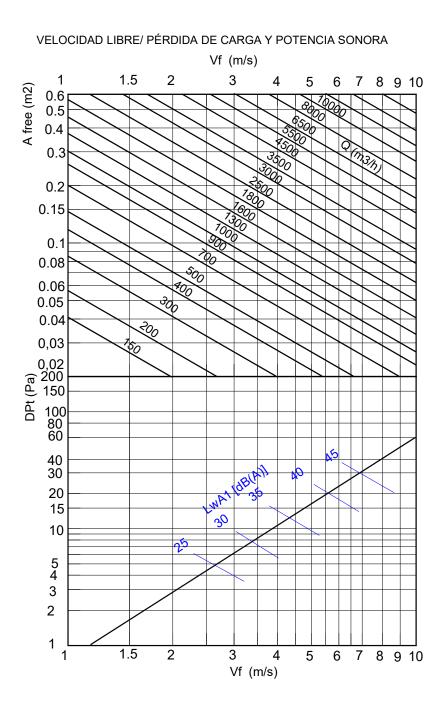
ACABADOS

M9006 Lacado color gris metalizado similar al RAL 9006.

M9016 Lacado color blanco similar al RAL 9016.

RAL... Lacado otros colores RAL.

2 03/20



SCV SERIES

SUPERFICIE LIBRE DE SALIDA DE AIRE (m2)

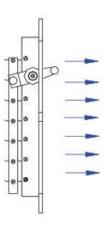
LH	100	150	200	250	300	400
100	0,007					
150	0,011	0,017				
200	0,014	0,023	0,029			
250	0,018	0,028	0,038	0,049		
300	0,021	0,033	0,043	0,054	0,065	0,086
400	0,029	0,044	0,058	0,073	0,087	0,117
500	0,036	0,055	0,073	0,091	0,109	0,145
600	0,045	0,070	0,095	0,121	0,146	

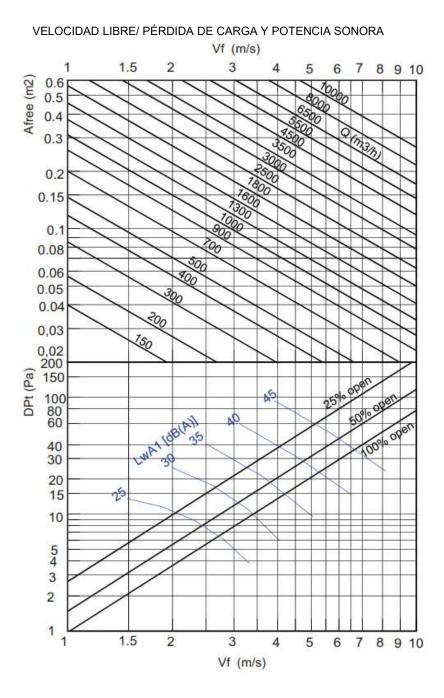
VELOCIDADES RECOMENDADAS.

Vmin	Vmax
m/s	m/s
2	3.5

Determinación del caudal de aire. Midiendo Vf en diferentes puntos de la rejilla hallamos Vfmed.

Q (I/s) = Vfmed (m/s) * Afree (m2) * 1000 Q (m3/h) = Vfmed (m/s) * Afree (m2) * 3600




MADEL®

CCV SERIES

SUPERFICIE LIBRE DE SALIDA DE AIRE (m2)

L	100	150	200	250	300	400
100	0,007					
150	0,011	0,017				
200	0,014	0,023	0,029			
250	0,018	0,028	0,038	0,049		
300	0,021	0,033	0,043	0,054	0,065	0,086
400	0,029	0,044	0,058	0,073	0,087	0,117
500	0,036	0,055	0,073	0,091	0,109	0,145
600	0,045	0,070	0,095	0,121	0,146	

VELOCIDADES RECOMENDADAS.

Vmin	Vmax
m/s	m/s
2	3.5

Determinación del caudal de aire. Midiendo Vf en diferentes puntos de la rejilla hallamos Vfmed.

Q (I/s) = Vfmed (m/s) * Afree (m2) * 1000 Q (m3/h) = Vfmed (m/s) * Afree (m2) * 3600

4 03/20